Propagative Oscillations in Codirectional Polariton Waveguide Couplers

J. Beierlein, E. Rozas, O. A. Egorov, M. Klaas, A. Yulin, H. Suchomel, T. H. Harder, M. Emmerling, M. D. Martín, I. A. Shelykh, C. Schneider, U. Peschel, L. Viña, S. Höfling, and S. Klembt
Phys. Rev. Lett. 126, 075302 – Published 16 February 2021
PDFHTMLExport Citation

Abstract

We report on novel exciton-polariton routing devices created to study and purposely guide light-matter particles in their condensate phase. In a codirectional coupling device, two waveguides are connected by a partially etched section that facilitates tunable coupling of the adjacent channels. This evanescent coupling of the two macroscopic wave functions in each waveguide reveals itself in real space oscillations of the condensate. This Josephson-like oscillation has only been observed in coupled polariton traps so far. Here, we report on a similar coupling behavior in a controllable, propagative waveguide-based design. By controlling the gap width, channel length, or propagation energy, the exit port of the polariton flow can be chosen. This codirectional polariton device is a passive and scalable coupler element that can serve in compact, next generation logic architectures.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 20 April 2020
  • Accepted 8 January 2021

DOI:https://doi.org/10.1103/PhysRevLett.126.075302

© 2021 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

J. Beierlein1,*, E. Rozas2, O. A. Egorov3, M. Klaas1, A. Yulin4, H. Suchomel1, T. H. Harder1, M. Emmerling1, M. D. Martín2, I. A. Shelykh4,5, C. Schneider1,6, U. Peschel3, L. Viña2,7,†, S. Höfling1,8, and S. Klembt1,‡

  • 1Technische Physik, Wilhelm-Conrad-Röntgen Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
  • 2Departamento de Física de Materiales, Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
  • 3Institute of Condensed Matter Theory and Optics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
  • 4Faculty of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
  • 5Science Institute, University of Iceland, IS-107 Reykjavik, Iceland
  • 6Institute of Physics, University of Oldenburg, D-26129 Oldenburg, Germany
  • 7Instituto de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
  • 8SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom

  • *Corresponding author. johannes.beierlein@uni-wuerzburg.de
  • Corresponding author. luis.vina@uam.es
  • Corresponding author. sebastian.klembt@physik.uni-wuerzburg.de

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 126, Iss. 7 — 19 February 2021

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×