Thermodynamic Uncertainty Relation for General Open Quantum Systems

Yoshihiko Hasegawa
Phys. Rev. Lett. 126, 010602 – Published 5 January 2021
PDFHTMLExport Citation

Abstract

We derive a thermodynamic uncertainty relation for general open quantum dynamics, described by a joint unitary evolution on a composite system comprising a system and an environment. By measuring the environmental state after the system-environment interaction, we bound the counting observables in the environment by the survival activity, which reduces to the dynamical activity in classical Markov processes. Remarkably, the relation derived herein holds for general open quantum systems with any counting observable and any initial state. Therefore, our relation is satisfied for classical Markov processes with arbitrary time-dependent transition rates and initial states. We apply our relation to continuous measurement and the quantum walk to find that the quantum nature of the system can enhance the precision. Moreover, we can make the lower bound arbitrarily small by employing appropriate continuous measurement.

  • Figure
  • Received 28 August 2020
  • Accepted 30 November 2020

DOI:https://doi.org/10.1103/PhysRevLett.126.010602

© 2021 American Physical Society

Physics Subject Headings (PhySH)

Statistical Physics & Thermodynamics

Authors & Affiliations

Yoshihiko Hasegawa*

  • Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan

  • *hasegawa@biom.t.u-tokyo.ac.jp

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 126, Iss. 1 — 8 January 2021

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×