• Open Access

Proton Bunch Self-Modulation in Plasma with Density Gradient

F. Braunmüller et al. (AWAKE Collaboration)
Phys. Rev. Lett. 125, 264801 – Published 28 December 2020

Abstract

We study experimentally the effect of linear plasma density gradients on the self-modulation of a 400 GeV proton bunch. Results show that a positive or negative gradient increases or decreases the number of microbunches and the relative charge per microbunch observed after 10 m of plasma. The measured modulation frequency also increases or decreases. With the largest positive gradient we observe two frequencies in the modulation power spectrum. Results are consistent with changes in wakefields’ phase velocity due to plasma density gradients adding to the slow wakefields’ phase velocity during self-modulation growth predicted by linear theory.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 30 July 2020
  • Revised 10 November 2020
  • Accepted 10 November 2020

DOI:https://doi.org/10.1103/PhysRevLett.125.264801

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Open access publication funded by the Max Planck Society.

Published by the American Physical Society

Physics Subject Headings (PhySH)

  1. Research Areas
Accelerators & Beams

Authors & Affiliations

Click to Expand

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 125, Iss. 26 — 31 December 2020

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×