Light-Induced Renormalization of the Dirac Quasiparticles in the Nodal-Line Semimetal ZrSiSe

G. Gatti, A. Crepaldi, M. Puppin, N. Tancogne-Dejean, L. Xian, U. De Giovannini, S. Roth, S. Polishchuk, Ph. Bugnon, A. Magrez, H. Berger, F. Frassetto, L. Poletto, L. Moreschini, S. Moser, A. Bostwick, Eli Rotenberg, A. Rubio, M. Chergui, and M. Grioni
Phys. Rev. Lett. 125, 076401 – Published 12 August 2020
PDFHTMLExport Citation

Abstract

In nodal-line semimetals, linearly dispersing states form Dirac loops in the reciprocal space with a high degree of electron-hole symmetry and a reduced density of states near the Fermi level. The result is reduced electronic screening and enhanced correlations between Dirac quasiparticles. Here we investigate the electronic structure of ZrSiSe, by combining time- and angle-resolved photoelectron spectroscopy with ab initio density functional theory (DFT) complemented by an extended Hubbard model (DFT+U+V) and by time-dependent DFT+U+V. We show that electronic correlations are reduced on an ultrashort timescale by optical excitation of high-energy electrons-hole pairs, which transiently screen the Coulomb interaction. Our findings demonstrate an all-optical method for engineering the band structure of a quantum material.

  • Figure
  • Figure
  • Figure
  • Received 13 December 2019
  • Accepted 17 July 2020

DOI:https://doi.org/10.1103/PhysRevLett.125.076401

© 2020 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

G. Gatti1,2, A. Crepaldi1,2,*, M. Puppin2,3, N. Tancogne-Dejean4, L. Xian4, U. De Giovannini4, S. Roth1,2, S. Polishchuk2,3, Ph. Bugnon1, A. Magrez1, H. Berger1, F. Frassetto5, L. Poletto5, L. Moreschini6,7, S. Moser6,8, A. Bostwick6, Eli Rotenberg6, A. Rubio4,9,10, M. Chergui2,3, and M. Grioni1,2

  • 1Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
  • 2Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
  • 3Laboratory of Ultrafast Spectroscopy, ISIC, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
  • 4Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany
  • 5National Research Council-Institute for Photonics and Nanotechnologies (CNR-IFN), via Trasea 7, 35131 Padova, Italy
  • 6Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
  • 7Department of Physics, University of California–Berkeley, Berkeley, California 94720, USA
  • 8Physikalisches Institut and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Würzburg 97074, Germany
  • 9Nano-Bio Spectroscopy Group, Departamento de Fisica de Materiales, Universidad del País Vasco, San Sebastian 20018, Spain
  • 10Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA

  • *alberto.crepaldi@epfl.ch

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 125, Iss. 7 — 14 August 2020

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×