Focusing of High-Brightness Electron Beams with Active-Plasma Lenses

R. Pompili et al.
Phys. Rev. Lett. 121, 174801 – Published 26 October 2018

Abstract

Plasma-based technology promises a tremendous reduction in size of accelerators used for research, medical, and industrial applications, making it possible to develop tabletop machines accessible for a broader scientific community. By overcoming current limits of conventional accelerators and pushing particles to larger and larger energies, the availability of strong and tunable focusing optics is mandatory also because plasma-accelerated beams usually have large angular divergences. In this regard, active-plasma lenses represent a compact and affordable tool to generate radially symmetric magnetic fields several orders of magnitude larger than conventional quadrupoles and solenoids. However, it has been recently proved that the focusing can be highly nonlinear and induce a dramatic emittance growth. Here, we present experimental results showing how these nonlinearities can be minimized and lensing improved. These achievements represent a major breakthrough toward the miniaturization of next-generation focusing devices.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 4 July 2018

DOI:https://doi.org/10.1103/PhysRevLett.121.174801

© 2018 American Physical Society

Physics Subject Headings (PhySH)

Accelerators & BeamsPlasma Physics

Authors & Affiliations

Click to Expand

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 121, Iss. 17 — 26 October 2018

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×