Quantifying Entanglement of Maximal Dimension in Bipartite Mixed States

Gael Sentís, Christopher Eltschka, Otfried Gühne, Marcus Huber, and Jens Siewert
Phys. Rev. Lett. 117, 190502 – Published 4 November 2016; Erratum Phys. Rev. Lett. 122, 169901 (2019)
PDFHTMLExport Citation

Abstract

The Schmidt coefficients capture all entanglement properties of a pure bipartite state and therefore determine its usefulness for quantum information processing. While the quantification of the corresponding properties in mixed states is important both from a theoretical and a practical point of view, it is considerably more difficult, and methods beyond estimates for the concurrence are elusive. In particular this holds for a quantitative assessment of the most valuable resource, the forms of entanglement that can only exist in high-dimensional systems. We derive a framework for lower bounding the appropriate measure of entanglement, the so-called G-concurrence, through few local measurements. Moreover, we show that these bounds have relevant applications also for multipartite states.

  • Figure
  • Received 7 July 2016

DOI:https://doi.org/10.1103/PhysRevLett.117.190502

© 2016 American Physical Society

Physics Subject Headings (PhySH)

Quantum Information, Science & Technology

Erratum

Erratum: Quantifying Entanglement of Maximal Dimension in Bipartite Mixed States [Phys. Rev. Lett. 117, 190502 (2016)]

Gael Sentís, Christopher Eltschka, Otfried Gühne, Marcus Huber, and Jens Siewert
Phys. Rev. Lett. 122, 169901 (2019)

Authors & Affiliations

Gael Sentís1, Christopher Eltschka2, Otfried Gühne3, Marcus Huber4,5,6, and Jens Siewert7,8

  • 1Departamento de Física Teórica e Historia de la Ciencia, Universidad del País Vasco UPV/EHU, E-48080 Bilbao, Spain
  • 2Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany
  • 3Naturwissenschaftlich-Technische Fakultät, Universität Siegen, 57068 Siegen, Germany
  • 4Física Teòrica, Informació i Fenòmens Quàntics, Universitat Autonoma de Barcelona, ES-08193 Bellaterra, Barcelona, Spain
  • 5Group of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland
  • 6Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, A-1090 Vienna, Austria
  • 7Departamento de Química Física, Universidad del País Vasco UPV/EHU, E-48080 Bilbao, Spain
  • 8IKERBASQUE Basque Foundation for Science, E-48013 Bilbao, Spain

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 117, Iss. 19 — 4 November 2016

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×