First and Second Law of Thermodynamics at Strong Coupling

Udo Seifert
Phys. Rev. Lett. 116, 020601 – Published 12 January 2016

Abstract

For a small driven system coupled strongly to a heat bath, internal energy and exchanged heat are identified such that they obey the usual additive form of the first law. By identifying this exchanged heat with the entropy change of the bath, the total entropy production is shown to obey an integral fluctuation theorem on the trajectory level implying the second law in the form of a Clausius inequalilty on the ensemble level. In this Hamiltonian approach, the assumption of an initially uncorrelated state is not required. The conditions under which the proposed identification of heat is unique and experimentally accessible are clarified.

  • Received 15 October 2015

DOI:https://doi.org/10.1103/PhysRevLett.116.020601

© 2016 American Physical Society

Physics Subject Headings (PhySH)

Statistical Physics & Thermodynamics

Authors & Affiliations

Udo Seifert

  • II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 116, Iss. 2 — 15 January 2016

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×