• Editors' Suggestion

Free-Space Quantum Key Distribution by Rotation-Invariant Twisted Photons

Giuseppe Vallone, Vincenzo D’Ambrosio, Anna Sponselli, Sergei Slussarenko, Lorenzo Marrucci, Fabio Sciarrino, and Paolo Villoresi
Phys. Rev. Lett. 113, 060503 – Published 8 August 2014
PDFHTMLExport Citation

Abstract

“Twisted photons” are photons carrying a well-defined nonzero value of orbital angular momentum (OAM). The associated optical wave exhibits a helical shape of the wavefront (hence the name) and an optical vortex at the beam axis. The OAM of light is attracting a growing interest for its potential in photonic applications ranging from particle manipulation, microscopy, and nanotechnologies to fundamental tests of quantum mechanics, classical data multiplexing, and quantum communication. Hitherto, however, all results obtained with optical OAM were limited to laboratory scale. Here, we report the experimental demonstration of a link for free-space quantum communication with OAM operating over a distance of 210 m. Our method exploits OAM in combination with optical polarization to encode the information in rotation-invariant photonic states, so as to guarantee full independence of the communication from the local reference frames of the transmitting and receiving units. In particular, we implement quantum key distribution, a protocol exploiting the features of quantum mechanics to guarantee unconditional security in cryptographic communication, demonstrating error-rate performances that are fully compatible with real-world application requirements. Our results extend previous achievements of OAM-based quantum communication by over 2 orders of magnitude in the link scale, providing an important step forward in achieving the vision of a worldwide quantum network.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 29 April 2014

DOI:https://doi.org/10.1103/PhysRevLett.113.060503

© 2014 American Physical Society

Authors & Affiliations

Giuseppe Vallone1, Vincenzo D’Ambrosio2, Anna Sponselli3, Sergei Slussarenko4,*, Lorenzo Marrucci4, Fabio Sciarrino2, and Paolo Villoresi1,†

  • 1Dipartimento di Ingegneria dell’Informazione, Università di Padova, I-35131 Padova, Italy
  • 2Dipartimento di Fisica, Sapienza Università di Roma, I-00185 Roma, Italy
  • 3Dipartimento di Fisica e Astronomia, Università di Padova, I-35131 Padova, Italy
  • 4Dipartimento di Fisica, Università di Napoli Federico II and CNR–SPIN, I-80126 Napoli, Italy

  • *Present address: Centre for Quantum Dynamics, Griffith University, Brisbane, Queensland 4111, Australia.
  • paolo.villoresi@dei.unipd.it

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 113, Iss. 6 — 8 August 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×