Bond Order in Two-Dimensional Metals with Antiferromagnetic Exchange Interactions

Subir Sachdev and Rolando La Placa
Phys. Rev. Lett. 111, 027202 – Published 9 July 2013
PDFHTMLExport Citation

Abstract

We present an unrestricted Hartree-Fock computation of charge-ordering instabilities of two-dimensional metals with antiferromagnetic exchange interactions, allowing for arbitrary ordering wave vectors and internal wave functions of the particle-hole pair condensate. We find that the ordering has a dominant d symmetry of rotations about lattice points for a range of ordering wave vectors, including those observed in recent experiments at low temperatures on YBa2Cu3Oy. This d symmetry implies the charge ordering is primarily on the bonds of the Cu lattice, and we propose incommensurate bond order parameters for the underdoped cuprates. The field theory for the onset of Néel order in a metal has an emergent pseudospin symmetry which “rotates” d-wave Cooper pairs to particle-hole pairs [M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075128 (2010)]; our results show that this symmetry has consequences even when the spin correlations are short ranged and incommensurate.

  • Figure
  • Figure
  • Figure
  • Received 18 March 2013

DOI:https://doi.org/10.1103/PhysRevLett.111.027202

© 2013 American Physical Society

Authors & Affiliations

Subir Sachdev and Rolando La Placa

  • Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 111, Iss. 2 — 12 July 2013

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×