100-Fold Reduction of Electric-Field Noise in an Ion Trap Cleaned with In Situ Argon-Ion-Beam Bombardment

D. A. Hite, Y. Colombe, A. C. Wilson, K. R. Brown, U. Warring, R. Jördens, J. D. Jost, K. S. McKay, D. P. Pappas, D. Leibfried, and D. J. Wineland
Phys. Rev. Lett. 109, 103001 – Published 4 September 2012

Abstract

Motional heating of trapped atomic ions is a major obstacle to their use as quantum bits in a scalable quantum computer. The detailed physical origin of this heating is not well understood, but experimental evidence suggests that it is caused by electric-field noise emanating from the surface of the trap electrodes. In this study, we have investigated the role of adsorbates on the electrodes by identifying contaminant overlayers, implementing an in situ argon-ion-beam cleaning treatment, and measuring ion heating rates before and after treating the trap electrodes’ surfaces. We find a 100-fold reduction in heating rate after treatment. The experiments described here are sensitive to low levels of electric-field noise in the MHz frequency range. Therefore, this approach could become a useful tool in surface science that complements established techniques.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 31 January 2012

DOI:https://doi.org/10.1103/PhysRevLett.109.103001

Published by the American Physical Society

Authors & Affiliations

D. A. Hite, Y. Colombe, A. C. Wilson, K. R. Brown*, U. Warring, R. Jördens, J. D. Jost, K. S. McKay, D. P. Pappas, D. Leibfried, and D. J. Wineland

  • National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA

  • *Present Address: Georgia Tech Research Institute, 400 10th Street NW, Atlanta, GA 30332, USA.

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 109, Iss. 10 — 7 September 2012

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×