Liquid Crystal Cells with “Dirty” Substrates

Leo Radzihovsky and Quan Zhang
Phys. Rev. Lett. 103, 167802 – Published 12 October 2009

Abstract

We explore liquid crystal order in a cell with a “dirty” substrate imposing a random surface pinning. Modeling such systems by a random-field xy model with surface heterogeneity, we find that orientational order in the three-dimensional system is marginally unstable to such surface pinning. We compute the Larkin length scale, and the corresponding surface and bulk distortions. On longer scales we calculate correlation functions using the functional renormalization group and matching methods, finding a universal logarithmic and double-logarithmic roughness in two and three dimensions, respectively. For a finite thickness cell, we explore the interplay of homogeneous-heterogeneous substrate pair and detail crossovers as a function of disorder strength and cell thickness.

  • Figure
  • Received 13 May 2009

DOI:https://doi.org/10.1103/PhysRevLett.103.167802

©2009 American Physical Society

Authors & Affiliations

Leo Radzihovsky and Quan Zhang

  • Department of Physics, University of Colorado, Boulder, Colorado 80309, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 103, Iss. 16 — 16 October 2009

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×