Off-diagonal matrix elements of local operators in many-body quantum systems

Wouter Beugeling, Roderich Moessner, and Masudul Haque
Phys. Rev. E 91, 012144 – Published 28 January 2015

Abstract

In the time evolution of isolated quantum systems out of equilibrium, local observables generally relax to a long-time asymptotic value, governed by the expectation values (diagonal matrix elements) of the corresponding operator in the eigenstates of the system. The temporal fluctuations around this value, response to further perturbations, and the relaxation toward this asymptotic value are all determined by the off-diagonal matrix elements. Motivated by this nonequilibrium role, we present generic statistical properties of off-diagonal matrix elements of local observables in two families of interacting many-body systems with local interactions. Since integrability (or lack thereof) is an important ingredient in the relaxation process, we analyze models that can be continuously tuned to integrability. We show that, for generic nonintegrable systems, the distribution of off-diagonal matrix elements is a Gaussian centered at zero. As one approaches integrability, the peak around zero becomes sharper, so the distribution is approximately a combination of two Gaussians. We characterize the proximity to integrability through the deviation of this distribution from a Gaussian shape. We also determine the scaling dependence on system size of the average magnitude of off-diagonal matrix elements.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 16 July 2014

DOI:https://doi.org/10.1103/PhysRevE.91.012144

©2015 American Physical Society

Authors & Affiliations

Wouter Beugeling, Roderich Moessner, and Masudul Haque

  • Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 91, Iss. 1 — January 2015

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×