Extremal paths, the stochastic heat equation, and the three-dimensional Kardar-Parisi-Zhang universality class

Timothy Halpin-Healy
Phys. Rev. E 88, 042118 – Published 10 October 2013; Erratum Phys. Rev. E 88, 069903 (2013)
PDFHTMLExport Citation

Abstract

Following our numerical work [Phys. Rev. Lett. 109, 170602 (2012)] focused upon the 2+1 Kardar-Parisi-Zhang (KPZ) equation with flat initial condition, we return here to study, in depth, the three-dimensional (3D) radial KPZ problem, comparing common scaling phenomena exhibited by the pt-pt directed polymer in a random medium (DPRM), the stochastic heat equation (SHE) with multiplicative noise in three dimensions, and kinetic roughening phenomena associated with 3D Eden clusters. Examining variants of the 3D DPRM, as well as numerically integrating, via the Itô prescription, the constrained SHE for different values of the KPZ coupling, we provide strong evidence for universality within this 3D KPZ class, revealing shared values for the limit distribution skewness and kurtosis, along with universal first and second moments. Our numerical analysis of the 3D SHE, well flanked by the DPRM results, appears without precedent in the literature. We consider, too, the 2+1 KPZ equation in the deeply evolved kinetically roughened stationary state, extracting the essential limit distribution characterizing fluctuations therein, revealing a higher-dimensional relative of the 1+1 KPZ Baik-Rains distribution. Complementary, corroborative findings are provided via the Gaussian DPRM, as well as the restricted-solid-on-solid model of stochastic growth, stalwart members of the 2+1 KPZ class. Next, contact is made with a recent nonperturbative, field-theoretic renormalization group calculation for the key universal amplitude ratio in this context. Finally, in the crossover from transient to stationary-state statistics, we observe a higher dimensional manifestation of the skewness minimum discovered by Takeuchi [Phys. Rev. Lett. 110, 210604 (2013)] in 1+1 KPZ class liquid-crystal experiments.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
3 More
  • Received 21 July 2013

DOI:https://doi.org/10.1103/PhysRevE.88.042118

©2013 American Physical Society

Erratum

Authors & Affiliations

Timothy Halpin-Healy

  • Physics Department, Barnard College, Columbia University, New York, New York 10027, USA

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 88, Iss. 4 — October 2013

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×