Stochastic bifurcation in noise-driven lasers and Hopf oscillators

Sebastian Wieczorek
Phys. Rev. E 79, 036209 – Published 24 March 2009

Abstract

This paper considers nonlinear dynamics in an ensemble of uncoupled lasers, each being a limit-cycle oscillator, which are driven by the same external white Gaussian noise. As the external-noise strength increases, there is an onset of synchronization and then subsequent loss of synchrony. Local analysis of the laser equations shows that synchronization becomes unstable via stochastic bifurcation to chaos, defined as a passing of the largest Lyapunov exponent through zero. The locus of this bifurcation is calculated in the three-dimensional parameter space defined by the Hopf parameter, amount of amplitude-phase coupling, and external-noise strength. Numerical comparison between the laser system and the normal form of Hopf bifurcation uncovers a square-root law for this stochastic bifurcation as well as strong enhancement in noise-induced chaos due to the laser’s relaxation oscillation.

    • Received 8 October 2008

    DOI:https://doi.org/10.1103/PhysRevE.79.036209

    ©2009 American Physical Society

    Authors & Affiliations

    Sebastian Wieczorek

    • Mathematics Research Institute, University of Exeter, EX4 4QF, United Kingdom

    Article Text (Subscription Required)

    Click to Expand

    References (Subscription Required)

    Click to Expand
    Issue

    Vol. 79, Iss. 3 — March 2009

    Reuse & Permissions
    Access Options
    Author publication services for translation and copyediting assistance advertisement

    Authorization Required


    ×
    ×

    Images

    ×

    Sign up to receive regular email alerts from Physical Review E

    Log In

    Cancel
    ×

    Search


    Article Lookup

    Paste a citation or DOI

    Enter a citation
    ×