Limit of small exits in open Hamiltonian systems

Jacobo Aguirre and Miguel A. F. Sanjuán
Phys. Rev. E 67, 056201 – Published 1 May 2003
PDFExport Citation

Abstract

The nature of open Hamiltonian systems is analyzed, when the size of the exits decreases and tends to zero. Fractal basins appear typically in open Hamiltonian systems, but we claim that in the limit of small exits, the invariant sets tend to fill up the whole phase space with the strong consequence that a new kind of basin appears, where the unpredictability grows indefinitely. This means that for finite, arbitrarily small accuracy, we can find uncertain basins, where any information about the future of the system is lost. This total indeterminism had only been reported in dissipative systems, in particular in the so-called intermingled riddled basins, as well as in the riddledlike basins. We show that this peculiar, behavior is a general feature of open Hamiltonian systems.

  • Received 25 July 2002

DOI:https://doi.org/10.1103/PhysRevE.67.056201

©2003 American Physical Society

Authors & Affiliations

Jacobo Aguirre and Miguel A. F. Sanjuán

  • Nonlinear Dynamics and Chaos Group, Departamento de Matemáticas y Física Aplicadas y Ciencias de la Naturaleza, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain

References (Subscription Required)

Click to Expand
Issue

Vol. 67, Iss. 5 — May 2003

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×