Non-Hermitian localization and population biology

David R. Nelson and Nadav M. Shnerb
Phys. Rev. E 58, 1383 – Published 1 August 1998
PDFExport Citation

Abstract

The time evolution of spatial fluctuations in inhomogeneous d-dimensional biological systems is analyzed. A single species continuous growth model, in which the population disperses via diffusion and convection is considered. Time-independent environmental heterogeneities, such as a random distribution of nutrients or sunlight are modeled by quenched disorder in the growth rate. Linearization of this model of population dynamics shows that the fastest growing localized state dominates in a time proportional to a power of the logarithm of the system size. Using an analogy with a Schrödinger equation subject to a constant imaginary vector potential, we propose a delocalization transition for the steady state of the nonlinear problem at a critical convection threshold separating localized and extended states. In the limit of high convection velocity, the linearized growth problem in d dimensions exhibits singular scaling behavior described by a (d1)-dimensional generalization of the noisy Burgers’ equation, with universal singularities in the density of states associated with disorder averaged eigenvalues near the band edge in the complex plane. The Burgers mapping leads to unusual transverse spreading of convecting delocalized populations.

  • Received 8 August 1997

DOI:https://doi.org/10.1103/PhysRevE.58.1383

©1998 American Physical Society

Authors & Affiliations

David R. Nelson and Nadav M. Shnerb

  • Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138

References (Subscription Required)

Click to Expand
Issue

Vol. 58, Iss. 2 — August 1998

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×