Rheology, birefringence, and small-angle neutron scattering in a charged micellar system: Evidence of a shear-induced phase transition

E. Cappelaere, J. F. Berret, J. P. Decruppe, R. Cressely, and P. Lindner
Phys. Rev. E 56, 1869 – Published 1 August 1997
PDFExport Citation

Abstract

We report here the experimental results on the first-order isotropic to nematic phase transition induced by shear in a concentrated micellar solution of cetyltrimethylammanium bromide (CTAB) without salt. We use and compare the results obtained under shear on the same solution with the help of four different techniques: rheology (stress and shear rate controlled), flow birefringence (FB), and small-angle neutron scattering under shear (SANSUS). The system without salt studied here is a model system. The rheological data show that the shear stress σ, as a function of the shear rate, allows one to distinguish three domains: a Newtonian regime (I) for γ̇<γ̇1c, where the viscosity remains constant and equal to η0 (zero shear viscosity); a plateau of the shear stress, noted II for γ̇1c<γ̇<γ̇2c; and a third domain (III) corresponding to the turnup of the shear stress for γ̇>γ̇2c. For the shear rate belonging to domain II, FB shows two different concentric layers of liquid presenting different anisotropic properties. SANSUS measurements in domains II and III indicate that the structure factor of the strongly oriented phase is identical to that of a nematic phase. This complete study of the salt-free CTAB system allows one to describe the phase transition induced by shear and to show that there is good agreement with the results obtained with the four techniques.

  • Received 21 January 1997

DOI:https://doi.org/10.1103/PhysRevE.56.1869

©1997 American Physical Society

Authors & Affiliations

E. Cappelaere1, J. F. Berret2, J. P. Decruppe1, R. Cressely1, and P. Lindner3

  • 1Laboratoire de Physique des Liquides et des Interfaces, Groupe Rhéophysique des Colloïdes, Université de Metz, 1 Boulevard F. Arago, 57070 Metz, France
  • 2Groupe de Dynamique des Phases Condensées, UMR CNRS No. 5581, Université de Montpellier II, F-34095 Montpellier Cedex 05, France
  • 3Institut Laue-Langevin, Boı⁁te Postale 156, F-38042 Grenoble Cedex 9, France

References (Subscription Required)

Click to Expand
Issue

Vol. 56, Iss. 2 — August 1997

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×