Surface anchoring as a control parameter for shaping skyrmion or toron properties in thin layers of chiral nematic liquid crystals and noncentrosymmetric magnets

Andrey O. Leonov
Phys. Rev. E 104, 044701 – Published 13 October 2021

Abstract

Existence of topological localized states (skyrmions and torons) and the mechanism of their condensation into modulated states are the ruling principles of condensed matter systems, such as chiral nematic liquid crystals (CLCs) and chiral magnets (ChM). In bulk helimagnets, skyrmions are rendered into thermodynamically stable hexagonal skyrmion lattice due to the combined effect of a magnetic field and, e.g., small anisotropic contributions. In thin glass cells of CLCs, skyrmions are formed in response to the geometrical frustration and field coupling effects. By numerical modeling, I undertake a systematic study of skyrmion or toron properties in thin layers of CLCs and ChMs with competing surface-induced and bulk anisotropies. The conical phase with a variable polar angle serves as a suitable background, which shapes skyrmion internal structure, guides the nucleation processes, and substantializes the skyrmion-skyrmion interaction. I show that the hexagonal lattice of torons can be stabilized in a vast region of the constructed phase diagram for both easy-axis bulk and surface anisotropies. A topologically trivial droplet is shown to form as a domain boundary between two cone states with different rotational fashion, which underpins its stability. The findings provide a recipe for controllably creating skyrmions and torons, possessing the features on demand for potential applications.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 8 June 2021
  • Accepted 1 October 2021

DOI:https://doi.org/10.1103/PhysRevE.104.044701

©2021 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Andrey O. Leonov*

  • Chirality Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan; Department of Chemistry, Faculty of Science, Hiroshima University Kagamiyama, Higashi Hiroshima, Hiroshima 739-8526, Japan; and IFW Dresden, Postfach 270016, D-01171 Dresden, Germany

  • *leonov@hiroshima-u.ac.jp

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 104, Iss. 4 — October 2021

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×