Effect of viscous friction on entropy, entropy production, and entropy extraction rates in underdamped and overdamped media

Mesfin Asfaw Taye
Phys. Rev. E 103, 042132 – Published 23 April 2021

Abstract

Considering viscous friction that varies spatially and temporally, the general expressions for entropy production, free energy, and entropy extraction rates are derived to a Brownian particle that walks in overdamped and underdamped media. Via the well known stochastic approaches to underdamped and overdamped media, the thermodynamic expressions are first derived at a trajectory level then generalized to an ensemble level. To study the nonequilibrium thermodynamic features of a Brownian particle that hops in a medium where its viscosity varies on time, a Brownian particle that walks on a periodic isothermal medium (in the presence or absence of load) is considered. The exact analytical results depict that in the absence of load f=0, the entropy production rate ėp approaches the entropy extraction rate ḣd=0. This is reasonable since any system which is in contact with a uniform temperature should obey the detail balance condition in a long time limit. In the presence of load and when the viscous friction decreases either spatially or temporally, the entropy S(t) monotonously increases with time and saturates to a constant value as t further steps up. The entropy production rate ėp decreases in time and at steady state (in the presence of load) ėp=ḣd>0. On the contrary, when the viscous friction increases either spatially or temporally, the rate of entropy production as well as the rate of entropy extraction monotonously steps up showing that such systems are inherently irreversible. Furthermore, considering a spatially varying viscosity, the nonequilibrium thermodynamic features of a Brownian particle that hops in a ratchet potential with load is explored. In this case, the direction of the particle velocity is dictated by the magnitude of the external load of f. Far from the stall load, ėp=ḣd>0 and at stall force ėp=ḣd=0 revealing the system is reversible at this particular choice of parameter. In the absence of load, ėp=ḣd>0 as long as a distinct temperature difference is retained between the hot and cold baths. Moreover, considering a multiplicative noise, we explore the thermodynamic features of the model system.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 21 October 2020
  • Revised 9 March 2021
  • Accepted 7 April 2021

DOI:https://doi.org/10.1103/PhysRevE.103.042132

©2021 American Physical Society

Physics Subject Headings (PhySH)

Statistical Physics & Thermodynamics

Authors & Affiliations

Mesfin Asfaw Taye*

  • West Los Angles College, Science Division 9000 Overland Ave, Culver City, California 90230, USA

  • *tayem@wlac.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 103, Iss. 4 — April 2021

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×