Unraveling the intrinsic atomic physics behind x-ray absorption line shifts in warm dense silicon plasmas

Valentin V. Karasiev and S. X. Hu
Phys. Rev. E 103, 033202 – Published 8 March 2021

Abstract

We present a free-energy density functional theory (DFT)-based methodology for optical property calculations of warm dense matter to cover a wide range of thermodynamic conditions and photon energies including the entire x-ray range. It uses Mermin-Kohn-Sham density functional theory with exchange-correlation (XC) thermal effects taken into account via a fully temperature dependent generalized gradient approximation XC functional. The methodology incorporates a combination of the ab initio molecular dynamics (AIMD) snapshotted Kubo-Greenwood optic data with a single atom in simulation cell calculations to close the photon energy gap between the L and K edges and extend the K-edge tail toward many-keV photon energies. This gap arises in the standard scheme due to a prohibitively large number of bands required for the Kubo-Greenwood calculations with AIMD snapshots. Kubo-Greenwood data on snapshots provide an accurate description of optic properties at low photon frequencies slightly beyond the L edge and x-ray absorption near edges structure (XANES) spectra, while data from periodic calculations with single atoms cover the tail regions beyond the edges. To demonstrate its applicability to mid-Z materials where the standard DFT-based approach is not computationally feasible, we have applied it to opacity calculations of warm dense silicon plasmas. These first-principles calculations revealed a very interesting phenomenon of redshift-to-blueshift in KL (1s2p) and K-edge absorptions along both isotherm and isochore, which are absent in most continuum-lowering models of traditional plasma physics. This new physics phenomenon can be attributed to the underlying competition between the screening of deeply bound core electrons and the screening of outer-shell electrons caused by warm-dense-plasma conditions. We further demonstrate that the ratio of 1s2p to the K-edge x-ray absorptions can be used to characterize warm-dense-plasma conditions. Eventually, based on our absorption calculations, we have established a first-principles opacity table (FPOT) for silicon in a wide range of material densities and temperatures.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
4 More
  • Received 23 September 2020
  • Accepted 12 February 2021

DOI:https://doi.org/10.1103/PhysRevE.103.033202

©2021 American Physical Society

Physics Subject Headings (PhySH)

Plasma Physics

Authors & Affiliations

Valentin V. Karasiev* and S. X. Hu

  • Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 USA

  • *vkarasev@lle.rochester.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 103, Iss. 3 — March 2021

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×