Origin of subdiffusions in proteins: Insight from peptide systems

Chenliang Xia, Xuefeng He, Jun Wang, and Wei Wang
Phys. Rev. E 102, 062424 – Published 28 December 2020

Abstract

Subdiffusive kinetics are popular in proteins and peptides as observed in experiments and simulations. For protein systems with diverse interactions, are there multiple mechanisms to produce the common subdiffusion behavior? To approach this problem, long trajectories of two model peptides are simulated to study the mechanism of subdiffusion and the relations with their interactions. The free-energy profiles and the subdiffusive kinetics are observed for these two peptides. A hierarchical plateau analysis is employed to extract the features of the landscape from the mean square of displacement. The mechanism of subdiffusions can be postulated by comparing the exponents by simulations with those based on various models. The results indicate that the mechanisms of these two peptides are different and are related to the characteristics of their energy landscapes. The subdiffusion of the flexible peptide is mainly caused by depth distribution of traps on the energy landscape, while the subdiffusion of the helical peptide is attributed to the fractal topology of local minima on the landscape. The emergence of these different mechanisms reflects different kinetic scenarios in peptide systems though the peptides behave in a similar way of diffusion. To confirm these ideas, the transition networks between various conformations of these peptides are generated. Based on the network description, the controlled kinetics based only on the topology of the networks are calculated and compared with the results based on simulations. For the flexible peptide, the feature of controlled diffusion is distinct from that of simulation, and for the helical peptide, two kinds of kinetics have a similar exponent of subdiffusion. These results further exemplify the importance of the landscape topology in the kinetics of structural proteins and the effect of depth distribution of traps for the subdiffusion of disordered peptides.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
5 More
  • Received 29 August 2020
  • Revised 9 November 2020
  • Accepted 30 November 2020

DOI:https://doi.org/10.1103/PhysRevE.102.062424

©2020 American Physical Society

Physics Subject Headings (PhySH)

Physics of Living Systems

Authors & Affiliations

Chenliang Xia, Xuefeng He, Jun Wang*, and Wei Wang

  • School of Physics, Nanjing University, Nanjing 210093, People's Republic of China and National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China

  • *wangj@nju.edu.cn
  • wangwei@nju.edu.cn

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 102, Iss. 6 — December 2020

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×