• Open Access

Coupled membrane transporters reduce noise

Luca Cardelli, Luca Laurenti, and Attila Csikasz-Nagy
Phys. Rev. E 101, 012414 – Published 27 January 2020
PDFHTMLExport Citation

Abstract

Molecular systems are inherently probabilistic and operate in a noisy environment, yet, despite all these uncertainties, molecular functions are surprisingly reliable and robust. The principles used by natural systems to deal with noise are still not well understood, especially in a nonhomogeneous environment where molecules can diffuse across different compartments. In this paper we show that membrane transport mechanisms have very effective properties of noise reduction. In particular, we show that active transport mechanisms (those that can transport against a gradient of concentration by using energy or by means of the concentration gradient of other substances), such as symporters and antiporters, have surprising efficiency in noise reduction, which outperforms passive diffusion mechanisms and are well below Poisson levels. We link our results to the coupled transport of potassium, sodium, and glucose to show that the noise in internal glucose level can be greatly reduced. Our results show that compartmentalization can be a highly effective mechanism of noise reduction and suggests that membrane transport could give this extra benefit, contributing to the emergence of complex compartmentalization in eukaryotes.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 21 July 2019

DOI:https://doi.org/10.1103/PhysRevE.101.012414

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Physics of Living Systems

Authors & Affiliations

Luca Cardelli and Luca Laurenti

  • Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom

Attila Csikasz-Nagy

  • Randall Division of Cell and Molecular Biophysics and Institute of Mathematical and Molecular Biomedicine, King's College London, London, United Kingdom and Pázmány Péter Catholic University, Faculty of Information Technology and Bionics Budapest, Hungary

Article Text

Click to Expand

Supplemental Material

Click to Expand

References

Click to Expand
Issue

Vol. 101, Iss. 1 — January 2020

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×