Implications of the Holst term in a f(R) theory with torsion

Flavio Bombacigno and Giovanni Montani
Phys. Rev. D 99, 064016 – Published 15 March 2019

Abstract

We analyze a modified f(R) theory of gravity in the Palatini formulation, when a Holst term endowed with a dynamical Immirzi field is included. We study the basic features of the model, especially in view of eliminating the torsion field via the Immirzi field and the scalar-tensor degrees of freedom of the f(R) model. The main task of this study is the investigation of the morphology of the gravitational wave polarization when their coupling to a circle of test particles is considered. We first observe that the dynamics of the scalar mode of the f(R) Lagrangian is frozen out, since its first order term identically vanishes. This allows a detailed characterization of the linearized theory, which outlines the emergence of a modified Newtonian potential in the static limit, and when time independence is relaxed a standard gravitational wave plus the scalar wave associated to the Immirzi field. Investigating the effect of the coupling of this scalar-tensor wave on a circle of test particles, we arrive to define two effective gravitational polarizations, corresponding to an equivalent phenomenological wave, whose morphology is anomalous with respect the standard case of general relativity. In fact, the particle circle suffers modifications as it was subjected to modified plus and cross modes, whose specific features depend on the model free parameters and are, in principle, detectable via a data analysis procedure.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 17 October 2018

DOI:https://doi.org/10.1103/PhysRevD.99.064016

© 2019 American Physical Society

Physics Subject Headings (PhySH)

Gravitation, Cosmology & Astrophysics

Authors & Affiliations

Flavio Bombacigno1,* and Giovanni Montani2,†

  • 1Physics Department, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy
  • 2ENEA, FSN-FUSPHY-TSM, R.C. Frascati, Via E. Fermi 45, 00044 Frascati, Italy
  • Physics Department, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy

  • *flavio.bombacigno@uniroma1.it
  • giovanni.montani@enea.it

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 99, Iss. 6 — 15 March 2019

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×