• Rapid Communication
  • Open Access

Windings of twisted strings

Eduardo Casali and Piotr Tourkine
Phys. Rev. D 97, 061902(R) – Published 13 March 2018

Abstract

Twistor string models have been known for more than a decade now but have come back under the spotlight recently with the advent of the scattering equation formalism which has greatly generalized the scope of these models. A striking ubiquitous feature of these models has always been that, contrary to usual string theory, they do not admit vibrational modes and thus describe only conventional field theory. In this paper we report on the surprising discovery of a whole new sector of one of these theories which we call “twisted strings,” when spacetime has compact directions. We find that the spectrum is enhanced from a finite number of states to an infinite number of interacting higher spin massive states. We describe both bosonic and world sheet supersymmetric models, their spectra and scattering amplitudes. These models have distinctive features of both string and field theory, for example they are invariant under stringy T-duality but have the high energy behavior typical of field theory. Therefore they describe a new kind of field theories in target space, sitting on their own halfway between string and field theory.

  • Received 17 October 2017
  • Revised 7 December 2017

DOI:https://doi.org/10.1103/PhysRevD.97.061902

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Particles & Fields

Authors & Affiliations

Eduardo Casali1,* and Piotr Tourkine2,†

  • 1The Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, United Kingdom
  • 2CERN, Theory Group, CH-1211 Geneva, Switzerland

  • *eduardo.casali@maths.ox.ac.uk
  • piotr.tourkine@cern.ch

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 97, Iss. 6 — 15 March 2018

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×