Ultralow energy calibration of LUX detector using Xe127 electron capture

D. S. Akerib et al.
Phys. Rev. D 96, 112011 – Published 28 December 2017

Abstract

We report an absolute calibration of the ionization yields (Qy) and fluctuations for electronic recoil events in liquid xenon at discrete energies between 186 eV and 33.2 keV. The average electric field applied across the liquid xenon target is 180V/cm. The data are obtained using low energy Xe127 electron capture decay events from the 95.0-day first run from LUX (WS2013) in search of weakly interacting massive particles. The sequence of gamma-ray and x-ray cascades associated with I127 deexcitations produces clearly identified two-vertex events in the LUX detector. We observe the K-(binding energy, 33.2 keV), L-(5.2 keV), M-(1.1 keV), and N-(186 eV) shell cascade events and verify that the relative ratio of observed events for each shell agrees with calculations. The N-shell cascade analysis includes single extracted electron (SE) events and represents the lowest-energy electronic recoil in situ measurements that have been explored in liquid xenon.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
3 More
  • Received 5 September 2017

DOI:https://doi.org/10.1103/PhysRevD.96.112011

© 2017 American Physical Society

Physics Subject Headings (PhySH)

Particles & Fields

Authors & Affiliations

Click to Expand

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 96, Iss. 11 — 1 December 2017

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×