Bare action and regularized functional integral of asymptotically safe quantum gravity

Elisa Manrique and Martin Reuter
Phys. Rev. D 79, 025008 – Published 15 January 2009

Abstract

Investigations of quantum Einstein gravity (QEG) based upon the effective average action employ a flow equation which does not contain any ultraviolet (UV) regulator. Its renormalization group trajectories emanating from a non-Gaussian fixed point define asymptotically safe quantum field theories. A priori these theories are, somewhat unusually, given in terms of their effective rather than bare action. In this paper we construct a functional integral representation of these theories. We fix a regularized measure and show that every trajectory of effective average actions, depending on an IR cutoff only, induces an associated trajectory of bare actions which depend on a UV cutoff. Together with the regularized measure these bare actions give rise to a functional integral which reproduces the prescribed effective action when the UV cutoff is removed. In this way we are able to reconstruct the underlying microscopic (classical) system and identify its fundamental degrees of freedom and interactions. The bare action of the Einstein-Hilbert truncation is computed and its flow is analyzed as an example. Various conceptual issues related to the completion of the asymptotic safety program are discussed.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 25 November 2008

DOI:https://doi.org/10.1103/PhysRevD.79.025008

©2009 American Physical Society

Authors & Affiliations

Elisa Manrique and Martin Reuter

  • Institute of Physics, University of Mainz, Staudingerweg 7, D-55099 Mainz, Germany

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 79, Iss. 2 — 15 January 2009

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×