Can the flyby anomaly be attributed to earth-bound dark matter?

Stephen L. Adler
Phys. Rev. D 79, 023505 – Published 8 January 2009

Abstract

We make preliminary estimates to assess whether the recently reported flyby anomaly can be attributed to dark matter interactions. We consider both elastic and exothermic inelastic scattering from dark matter constituents; for isotropic dark matter velocity distributions, the former decrease, while the latter increase, the final flyby velocity. The fact that the observed flyby velocity anomaly shows examples with both positive and negative signs, requires the dominance of different dark matter scattering processes along different flyby trajectories. The magnitude of the observed anomalies requires dark matter densities many orders of magnitude greater than the galactic halo density. Such a large density could result from an accumulation cascade, in which the solar system-bound dark matter density is much higher than the galactic halo density, and the earth-bound density is much higher than the solar system-bound density. We discuss a number of strong constraints on the hypothesis of a dark matter explanation for the flyby anomaly. These require dark matter to be non-self-annihilating, with the dark matter scattering cross section on nucleons much larger, and the dark matter mass much lighter, than usually assumed.

  • Received 17 June 2008

DOI:https://doi.org/10.1103/PhysRevD.79.023505

©2009 American Physical Society

Authors & Affiliations

Stephen L. Adler*

  • Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540, USA

  • *adler@ias.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 79, Iss. 2 — 15 January 2009

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×