Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects

Michele Vallisneri
Phys. Rev. D 77, 042001 – Published 4 February 2008

Abstract

The Fisher-matrix formalism is used routinely in the literature on gravitational-wave detection to characterize the parameter-estimation performance of gravitational-wave measurements, given parametrized models of the waveforms, and assuming detector noise of known colored Gaussian distribution. Unfortunately, the Fisher matrix can be a poor predictor of the amount of information obtained from typical observations, especially for waveforms with several parameters and relatively low expected signal-to-noise ratios (SNR), or for waveforms depending weakly on one or more parameters, when their priors are not taken into proper consideration. In this paper I discuss these pitfalls; show how they occur, even for relatively strong signals, with a commonly used template family for binary-inspiral waveforms; and describe practical recipes to recognize them and cope with them. Specifically, I answer the following questions: (i) What is the significance of (quasi-)singular Fisher matrices, and how must we deal with them? (ii) When is it necessary to take into account prior probability distributions for the source parameters? (iii) When is the signal-to-noise ratio high enough to believe the Fisher-matrix result? In addition, I provide general expressions for the higher-order, beyond-Fisher-matrix terms in the 1/SNR expansions for the expected parameter accuracies.

  • Figure
  • Figure
  • Figure
  • Received 15 March 2007

DOI:https://doi.org/10.1103/PhysRevD.77.042001

©2008 American Physical Society

Authors & Affiliations

Michele Vallisneri

  • Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 77, Iss. 4 — 15 February 2008

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×