Information loss in black holes

S. W. Hawking
Phys. Rev. D 72, 084013 – Published 18 October 2005
An article within the collection: The Work of Stephen Hawking in Physical Review

Abstract

The question of whether information is lost in black holes is investigated using Euclidean path integrals. The formation and evaporation of black holes is regarded as a scattering problem with all measurements being made at infinity. This seems to be well formulated only in asymptotically AdS spacetimes. The path integral over metrics with trivial topology is unitary and information preserving. On the other hand, the path integral over metrics with nontrivial topologies leads to correlation functions that decay to zero. Thus at late times only the unitary information preserving path integrals over trivial topologies will contribute. Elementary quantum gravity interactions do not lose information or quantum coherence.

  • Received 22 August 2005

DOI:https://doi.org/10.1103/PhysRevD.72.084013

©2005 American Physical Society

Collections

This article appears in the following collection:

The Work of Stephen Hawking in Physical Review

To mark the passing of Stephen Hawking, we gathered together his 55 papers in Physical Review D and Physical Review Letters. They probe the edges of space and time, from "Black holes and thermodynamics” to "Wave function of the Universe."

Authors & Affiliations

S. W. Hawking

  • DAMTP, Center for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 72, Iss. 8 — 15 October 2005

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×