• Open Access

First measurement of the forward rapidity gap distribution in pPb collisions at sNN=8.16TeV

A. Tumasyan et al. (CMS Collaboration)
Phys. Rev. D 108, 092004 – Published 20 November 2023

Abstract

For the first time at LHC energies, the forward rapidity gap spectra from proton-lead collisions for both proton and lead dissociation processes are presented. The analysis is performed over 10.4 units of pseudorapidity at a center-of-mass energy per nucleon pair of sNN=8.16TeV, almost 300 times higher than in previous measurements of diffractive production in proton-nucleus collisions. For lead dissociation processes, which correspond to the pomeron-lead event topology, the epos-lhc generator predictions are a factor of 2 below the data, but the model gives a reasonable description of the rapidity gap spectrum shape. For the pomeron-proton topology, the epos-lhc, qgsjet ii, and hijing predictions are all at least a factor of 5 lower than the data. The latter effect might be explained by a significant contribution of ultraperipheral photoproduction events mimicking the signature of diffractive processes. These data may be of significant help in understanding the high energy limit of quantum chromodynamics and for modeling cosmic ray air showers.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 18 January 2023
  • Accepted 28 September 2023

DOI:https://doi.org/10.1103/PhysRevD.108.092004

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

© 2023 CERN, for the CMS Collaboration

Physics Subject Headings (PhySH)

Particles & FieldsNuclear Physics

Authors & Affiliations

Click to Expand

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 108, Iss. 9 — 1 November 2023

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×