• Open Access

Sensitivity of spin-aligned searches for neutron star-black hole systems using future detectors

Rahul Dhurkunde and Alexander H. Nitz
Phys. Rev. D 106, 103035 – Published 28 November 2022

Abstract

Current searches for gravitational waves from compact-binary objects are primarily designed to detect the dominant gravitational-wave mode and assume that the binary components have spins which are aligned with the orbital angular momentum. These choices lead to observational biases in the observed distribution of sources. Sources with significant spin-orbit precession or unequal-mass-ratios, which have non-negligible contributions from subdominant gravitational-wave modes, may be missed; in particular, this may significantly suppress or bias the observed neutron star–black hole (NSBH) population. We simulate a fiducial population of NSBH mergers and determine the impact of using searches that only account for the dominant-mode and aligned spin. We compare the impact for the Advanced LIGO design, A+, LIGO Voyager, and Cosmic Explorer observatories. We find that for a fiducial population where the spin distribution is isotropic in orientation and uniform in magnitude, we will miss 25% of sources with mass-ratio q>6 and up to 60% of highly precessing sources (χp>0.5), after accounting for the approximate increase in background. In practice, the true observational bias can be even larger due to strict signal-consistency tests applied in searches. The observation of low spin, unequal-mass-ratio sources by Advanced LIGO design and Advanced Virgo may in part be due to these selection effects. The development of a search sensitive to high mass-ratio, precessing sources may allow the detection of new binaries whose spin properties would provide key insights into the formation and astrophysics of compact objects.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
4 More
  • Received 11 August 2022
  • Accepted 27 October 2022

DOI:https://doi.org/10.1103/PhysRevD.106.103035

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Open access publication funded by the Max Planck Society.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Gravitation, Cosmology & Astrophysics

Authors & Affiliations

Rahul Dhurkunde and Alexander H. Nitz

  • Max-Planck-Institut fur Gravitationsphysik (Albert-Einstein-Institut), D-30167 Hannover, Germany and Leibniz Universitat Hannover, D-30167 Hannover, Germany

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 106, Iss. 10 — 15 November 2022

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×