Transient acceleration events in LISA Pathfinder data: Properties and possible physical origin

M. Armano et al. (LISA Pathfinder Collaboration)
Phys. Rev. D 106, 062001 – Published 12 September 2022

Abstract

We present an in depth analysis of the transient events, or glitches, detected at a rate of about one per day in the differential acceleration data of LISA Pathfinder. We show that these glitches fall in two rather distinct categories: fast transients in the interferometric motion readout on one side, and true force transient events on the other. The former are fast and rare in ordinary conditions. The second may last from seconds to hours and constitute the majority of the glitches. We present an analysis of the physical and statistical properties of both categories, including a cross-analysis with other time series like magnetic fields, temperature, and other dynamical variables. Based on these analyses we discuss the possible sources of the force glitches and identify the most likely, among which the outgassing environment surrounding the test-masses stands out. We discuss the impact of these findings on the LISA design and operation, and some risk mitigation measures, including experimental studies that may be conducted on the ground, aimed at clarifying some of the questions left open by our analysis.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
9 More
  • Received 24 May 2022
  • Accepted 23 August 2022

DOI:https://doi.org/10.1103/PhysRevD.106.062001

© 2022 American Physical Society

Physics Subject Headings (PhySH)

Gravitation, Cosmology & Astrophysics

Authors & Affiliations

Click to Expand

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 106, Iss. 6 — 15 September 2022

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×