• Open Access

Symmetry finder: A method for hunting symmetry in neutrino oscillation

Hisakazu Minakata
Phys. Rev. D 104, 075024 – Published 18 October 2021

Abstract

Symmetry in neutrino oscillation serves for a better understanding of the physical properties of the phenomenon. We present a systematic way of finding symmetry in neutrino oscillation, which we call symmetry finder (SF). By extending the known framework in vacuum into a matter environment, we derive the SF equation, a powerful machinery for identifying symmetry in the system. After learning lessons on symmetry in the Zaglauer-Schwarzer system with matter equivalent to the vacuum symmetry, we apply the SF method to the [P. B. Denton et al., Compact perturbative expressions for neutrino oscillations in matter, J. High Energy Phys. 06 (2016) 051.] (DMP) perturbation theory to first order. We show that the method is so powerful that we uncover the eight reparametrization symmetries with the 12 state exchange in DMP, denoted as IA, IB, , IVB, all new except for IA. The transformations consist of both fundamental and dynamical variables, indicating their equal importance. It is also shown that all the symmetries discussed in this paper can be understood as the Hamiltonian symmetries, which ensures their all-order validity and applicability to varying density matter.

  • Received 26 June 2021
  • Accepted 27 September 2021

DOI:https://doi.org/10.1103/PhysRevD.104.075024

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Particles & Fields

Authors & Affiliations

Hisakazu Minakata*

  • Center for Neutrino Physics, Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA

  • *hisakazu.minakata@gmail.com

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 104, Iss. 7 — 1 October 2021

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×