• Open Access

One-loop renormalization of vector boson scattering with the electroweak chiral Lagrangian in covariant gauges

Maria J. Herrero and Roberto A. Morales
Phys. Rev. D 104, 075013 – Published 12 October 2021

Abstract

This work presents a first full one-loop computation of vector boson scattering (VBS) within the non-linear effective field theory given by the bosonic sector of the usually called electroweak chiral Lagrangian (EChL). The computation is performed in the most general case of covariant Rξ gauges and is compared through all this work with the Standard Model case, whose computation in these covariant gauges is also novel and is presented also here. The calculation of the one-loop VBS amplitude is performed using the diagrammatic method by means of the one-particle-irreducible (1PI) Green functions that are involved in these scattering processes. The central part of this work is then devoted to the renormalization of all the n-legs one-loop 1PI Green functions involved. This renormalization is performed in the most general off-shell case with arbitrary external legs momenta. We then describe in full detail the renormalization program, which within this context of the EChL, implies to derive all the counterterms for both the electroweak parameters, like boson masses and gauge couplings, and those for the EChL coefficients. These later are crucial for the renormalization of the new divergences typically appearing when computing loops with the lowest chiral dimension Lagrangian. We present here the full list of involved divergences and counterterms in the Rξ gauges and derive the complete set of renormalization group equations for the EChL coefficients. In the last part of this work, we present the EChL numerical results for the one-loop cross section in the WZ channel and compare them with the SM results.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
6 More
  • Received 22 July 2021
  • Accepted 10 September 2021

DOI:https://doi.org/10.1103/PhysRevD.104.075013

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Particles & Fields

Authors & Affiliations

Maria J. Herrero* and Roberto A. Morales

  • Departamento de Física Teórica and Instituto de Física Teórica, IFT-UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain

  • *maria.herrero@uam.es
  • robertoa.morales@uam.es

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 104, Iss. 7 — 1 October 2021

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×