• Open Access

Bulk geometry in gauge/gravity duality and color degrees of freedom

Masanori Hanada
Phys. Rev. D 103, 106007 – Published 6 May 2021

Abstract

U(N) supersymmetric Yang-Mills theory naturally appears as the low-energy effective theory of a system of N D-branes and open strings between them. Transverse spatial directions emerge from scalar fields, which are N×N matrices with color indices; roughly speaking, the eigenvalues are the locations of D-branes. In the past, it was argued that this simple “emergent space” picture cannot be used in the context of gauge/gravity duality, because the ground-state wave function delocalizes at large N, leading to a conflict with the locality in the bulk geometry. In this paper, we show that this conventional wisdom is not correct: the ground-state wave function does not delocalize, and there is no conflict with the locality of the bulk geometry. This conclusion is obtained by clarifying the meaning of the “diagonalization of a matrix” in Yang-Mills theory, which is not as obvious as one might think. This observation opens up the prospect of characterizing the bulk geometry via the color degrees of freedom in Yang-Mills theory, all the way down to the center of the bulk.

  • Figure
  • Figure
  • Received 10 March 2021
  • Accepted 29 March 2021

DOI:https://doi.org/10.1103/PhysRevD.103.106007

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Particles & Fields

Authors & Affiliations

Masanori Hanada

  • Department of Mathematics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 103, Iss. 10 — 15 May 2021

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×