• Open Access

Transverse-momentum-dependent parton distribution functions up to twist 4 for spin-1 hadrons

S. Kumano and Qin-Tao Song
Phys. Rev. D 103, 014025 – Published 25 January 2021

Abstract

We show possible transverse-momentum-dependent parton distribution functions (TMDs) for spin-1 hadrons including twist-3 and twist-4 functions in addition to the leading twist-2 ones by investigating all the possible decomposition of a quark correlation function in the Lorentz-invariant way. The Hermiticity and parity invariance are imposed in the decomposition; however, the time-reversal invariance is not used due to an active role of gauge links in the TMDs. Therefore, there exist time-reversal-odd functions in addition to the time-reversal even ones in the TMDs. We list all the functions up to twist-4 level because there were missing terms associated with the light cone vector n in previous works on the twist-2 part and there was no correlation-function study in the twist-3 and twist-4 parts for spin-1 hadrons. We show that 40 TMDs exist in the tensor-polarized spin-1 hadron in twists 2–4. Some expressions of twist-2 structure functions are modified from previous derivations due to the new terms with n, and we find 30 new structure functions in twists 3 and 4 in this work. Since time-reversal-odd terms of the collinear correlation function should vanish after integrals over the partonic transverse momentum, we obtain new sum rules for the time-reversal-odd structure functions, d2kTgLT=d2kThLL=d2kTh3LL=0. In addition, we indicate that new transverse-momentum-dependent fragmentation functions exist in tensor-polarized spin-1 hadrons. The TMDs are rare observables to find explicit color degrees of freedom in terms of color flow, which cannot be usually measured because the color is confined in hadrons. Furthermore, the studies of TMDs enable us not only to find three-dimensional structure of hadrons, namely, hadron tomography including transverse structure, but also to provide unique opportunities for creating interesting interdisciplinary physics fields such as gluon condensates, color Aharonov-Bohm effect, and color entanglement. The tensor structure functions may not be easily measured in experiments. However, high-intensity facility such as the Thomas Jefferson National Accelerator Facility, the Fermilab Main Injector, and future accelerators like electron-ion collider may probe such observables. In addition, since the Nuclotron-based Ion Collider fAcility focuses on spin-1 deuteron structure functions, there is a possibility to study the details of polarized structure functions of the deuteron at this facility.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 17 November 2020
  • Accepted 23 December 2020
  • Corrected 6 May 2021

DOI:https://doi.org/10.1103/PhysRevD.103.014025

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Particles & Fields

Corrections

6 May 2021

Correction: The first terms with an integral in the abstract and in the first paragraph of Sec. IV contained errors and have been fixed.

Authors & Affiliations

S. Kumano1,2 and Qin-Tao Song3,*

  • 1KEK Theory Center, Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan
  • 2J-PARC Branch, KEK Theory Center, Institute of Particle and Nuclear Studies, KEK, and Theory Group, Particle and Nuclear Physics Division, J-PARC Center, Shirakata 203-1, Tokai, Ibaraki 319-1106, Japan
  • 3School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China

  • *songqintao@zzu.edu.cn

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 103, Iss. 1 — 1 January 2021

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×