Comparison of electromagnetic and nuclear dissociation of Ne17

F. Wamers et al.
Phys. Rev. C 97, 034612 – Published 20 March 2018

Abstract

The Borromean drip-line nucleus Ne17 has been suggested to possess a two-proton halo structure in its ground state. In the astrophysical rp-process, where the two-proton capture reaction O15(2p,γ)Ne17 plays an important role, the calculated reaction rate differs by several orders of magnitude between different theoretical approaches. To add to the understanding of the Ne17 structure we have studied nuclear and electromagnetic dissociation. A 500 MeV/u Ne17 beam was directed toward lead, carbon, and polyethylene targets. Oxygen isotopes in the final state were measured in coincidence with one or two protons. Different reaction branches in the dissociation of Ne17 were disentangled. The relative populations of s and d states in F16 were determined for light and heavy targets. The differential cross section for electromagnetic dissociation (EMD) shows a continuous internal energy spectrum in the three-body system O15+2p. The Ne17 EMD data were compared to current theoretical models. None of them, however, yields satisfactory agreement with the experimental data presented here. These new data may facilitate future development of adequate models for description of the fragmentation process.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
3 More
  • Received 18 December 2017

DOI:https://doi.org/10.1103/PhysRevC.97.034612

©2018 American Physical Society

Physics Subject Headings (PhySH)

Nuclear Physics

Authors & Affiliations

Click to Expand

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 97, Iss. 3 — March 2018

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×