• Featured in Physics
  • Editors' Suggestion
  • Open Access

First measurement of the Ru96(p,γ)Rh97 cross section for the p process with a storage ring

Bo Mei et al.
Phys. Rev. C 92, 035803 – Published 2 September 2015
Physics logo See Synopsis: Throwing Nuclei in the Ring

Abstract

This work presents a direct measurement of the Ru96(p,γ)Rh97 cross section via a novel technique using a storage ring, which opens opportunities for reaction measurements on unstable nuclei. A proof-of-principle experiment was performed at the storage ring ESR at GSI in Darmstadt, where circulating Ru96 ions interacted repeatedly with a hydrogen target. The Ru96(p,γ)Rh97 cross section between 9 and 11 MeV has been determined using two independent normalization methods. As key ingredients in Hauser-Feshbach calculations, the γ-ray strength function as well as the level density model can be pinned down with the measured (p,γ) cross section. Furthermore, the proton optical potential can be optimized after the uncertainties from the γ-ray strength function and the level density have been removed. As a result, a constrained Ru96(p,γ)Rh97 reaction rate over a wide temperature range is recommended for p-process network calculations.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 20 May 2015

DOI:https://doi.org/10.1103/PhysRevC.92.035803

This article is available under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Synopsis

Key Image

Throwing Nuclei in the Ring

Published 2 September 2015

By trapping nuclei in a particle storage ring, researchers characterize previously inaccessible nuclear reactions that take place in stellar explosions.

See more in Physics

Authors & Affiliations

Click to Expand

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 92, Iss. 3 — September 2015

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 3.0 License. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×