Nuclear fission with mean-field instantons

Janusz Skalski
Phys. Rev. C 77, 064610 – Published 30 June 2008

Abstract

We present a description of nuclear spontaneous fission, and generally of quantum tunneling, in terms of instantons, that is, periodic imaginary-time solutions to time-dependent mean-field equations. This description allows comparisons to be made with the more familiar generator coordinate (GCM) and adiabatic time-dependent Hartree-Fock (ATDHF) methods. It is shown that the action functional whose value for the instanton is the quasiclassical estimate of the decay exponent fulfills the minimum principle when additional constraints are imposed on trial fission paths. In analogy with mechanics, these are conditions of energy conservation and the velocity-momentum relations. In the adiabatic limit, the instanton method reduces to the time-odd ATDHF equation, with collective mass including the time-odd Thouless-Valatin term, while the GCM mass completely ignores velocity-momentum relations. This implies that GCM inertia generally overestimates the instanton-related decay rate. The very existence of the minimum principle offers hope for a variational search for instantons. After the inclusion of pairing, the instanton equations and the variational principle can be expressed in terms of the imaginary-time-dependent Hartree-Fock-Bogoliubov (TDHFB) theory. The adiabatic limit of this theory reproduces ATDHFB inertia.

  • Received 3 December 2007

DOI:https://doi.org/10.1103/PhysRevC.77.064610

©2008 American Physical Society

Authors & Affiliations

Janusz Skalski*

  • Sołtan Institute for Nuclear Studies, ul. Hoż 69, PL-00681, Warsaw, Poland

  • *jskalski@fuw.edu.pl

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 77, Iss. 6 — June 2008

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×