Caloric curves and critical behavior in nuclei

J. B. Natowitz, R. Wada, K. Hagel, T. Keutgen, M. Murray, A. Makeev, L. Qin, P. Smith, and C. Hamilton
Phys. Rev. C 65, 034618 – Published 4 March 2002
PDFExport Citation

Abstract

Data from a number of different experimental measurements are used to construct caloric curves for five different regions of nuclear mass. These curves are qualitatively similar, and exhibit plateaus at the higher excitation energies. The limiting temperatures represented by the plateaus decrease with increasing nuclear mass, and are in very good agreement with results of recent calculations employing either a chiral symmetry model or the Gogny interaction. This agreement strongly favors a soft equation of state. Evidence is presented which suggests that critical excitation energies and critical temperatures might be determined from caloric curve measurements when the mass variations inherent in such measurements are taken into account.

  • Received 19 June 2001

DOI:https://doi.org/10.1103/PhysRevC.65.034618

©2002 American Physical Society

Authors & Affiliations

J. B. Natowitz, R. Wada, K. Hagel, T. Keutgen, M. Murray, A. Makeev, L. Qin, P. Smith, and C. Hamilton

  • Cyclotron Institute, Texas A&M University, College Station, Texas 77845

References (Subscription Required)

Click to Expand
Issue

Vol. 65, Iss. 3 — March 2002

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×