• Open Access

Light (anti)nuclei production in Pb-Pb collisions at sNN=5.02 TeV

S. Acharya et al. (ALICE Collaboration)
Phys. Rev. C 107, 064904 – Published 8 June 2023

Abstract

The measurement of the production of deuterons, tritons and He3 and their antiparticles in Pb-Pb collisions at sNN=5.02TeV is presented in this article. The measurements are carried out at midrapidity (|y|< 0.5) as a function of collision centrality using the ALICE detector. The pT-integrated yields, the coalescence parameters and the ratios to protons and antiprotons are reported and compared with nucleosynthesis models. The comparison of these results in different collision systems at different center-of-mass collision energies reveals a suppression of nucleus production in small systems. In the Statistical Hadronisation Model framework, this can be explained by a small correlation volume where the baryon number is conserved, as already shown in previous fluctuation analyses. However, a different size of the correlation volume is required to describe the proton yields in the same data sets. The coalescence model can describe this suppression by the fact that the wave functions of the nuclei are large and the fireball size starts to become comparable and even much smaller than the actual nucleus at low multiplicities.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 10 February 2023
  • Accepted 16 May 2023

DOI:https://doi.org/10.1103/PhysRevC.107.064904

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

©2023 CERN, for the ALICE Collaboration

Physics Subject Headings (PhySH)

Accelerators & BeamsNuclear Physics

Authors & Affiliations

Click to Expand

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 107, Iss. 6 — June 2023

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×