• Open Access

Neutron-induced fission cross sections of Th232 and U233 up to 1 GeV using parallel plate avalanche counters at the CERN n_TOF facility

D. Tarrío et al. (The n_TOF Collaboration)
Phys. Rev. C 107, 044616 – Published 28 April 2023

Abstract

The neutron-induced fission cross sections of Th232 and U233 were measured relative to U235 in a wide neutron energy range up to 1 GeV (and from fission threshold in the case of Th232, and from 0.7 eV in case of U233), using the white-spectrum neutron source at the CERN Neutron Time-of-Flight (n_TOF) facility. Parallel plate avalanche counters (PPACs) were used, installed at the Experimental Area 1 (EAR1), which is located at 185 m from the neutron spallation target. The anisotropic emission of fission fragments were taken into account in the detection efficiency by using, in the case of U233, previous results available in EXFOR, whereas in the case of Th232 these data were obtained from our measurement, using PPACs and targets tilted 45 with respect to the neutron beam direction. Finally, the obtained results are compared with past measurements and major evaluated nuclear data libraries. Calculations using the high-energy reaction models INCL++ and ABLA07 were performed and some of their parameters were modified to reproduce the experimental results. At high energies, where no other neutron data exist, our results are compared with experimental data on proton-induced fission. Moreover, the dependence of the fission cross section at 1 GeV with the fissility parameter of the target nucleus is studied by combining those (p,f) data with our (n,f) data on Th232 and U233 and on other isotopes studied earlier at n_TOF using the same experimental setup.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
9 More
  • Received 23 April 2022
  • Revised 9 January 2023
  • Accepted 7 April 2023

DOI:https://doi.org/10.1103/PhysRevC.107.044616

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Nuclear Physics

Authors & Affiliations

Click to Expand

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 107, Iss. 4 — April 2023

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×