Testing the predictive power of realistic shell model calculations via lifetime measurement of the 11/2+ state in Sb131

S. Bottoni, E. R. Gamba, G. De Gregorio, A. Gargano, S. Leoni, B. Fornal, N. Brancadori, G. Ciconali, F. C. L. Crespi, N. Cieplicka-Oryńczak, Ł. W. Iskra, G. Colombi, Y. H. Kim, U. Köster, C. Michelagnoli, F. Dunkel, A. Esmaylzadeh, L. Gerhard, J. Jolie, L. Knafla, M. Ley, J.-M. Régis, K. Schomaker, and M. Sferrazza
Phys. Rev. C 107, 014322 – Published 26 January 2023

Abstract

The lifetime of the 11/21+ state in the Sb131 nucleus was measured at the LOHENGRIN spectrometer of the Institut Laue-Langevin via neutron-induced fission of U235 using γ-ray fast-timing techniques. The obtained value of T1/2=3(2) ps, at the edge of the sensitivity of the experimental method, is the first result for the 11/21+ state half-life in neutron-rich Sb isotopes. The corresponding quadrupole reduced transition probability to the ground state is B(E2)=1.40.6+1.5W.u., indicating a noncollective nature of this state. Realistic shell-model calculations performed in a large valence space reproduce well the experimental value and point to a dominant 2+(Sn130)πg7/2 configuration for the 11/21+ state, as expected in a weak-coupling scenario. At the same time, the sum of the quadrupole strength of the multiplet states is predicted to exceed the one of the Sn130 core as a consequence of the equal contribution of the proton and the proton-neutron quadrupole matrix elements, pointing to possible development of collectivity already in the close neighborhood of Sn132.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 12 October 2022
  • Accepted 3 January 2023

DOI:https://doi.org/10.1103/PhysRevC.107.014322

©2023 American Physical Society

Physics Subject Headings (PhySH)

Nuclear Physics

Authors & Affiliations

S. Bottoni1,2,*, E. R. Gamba1,2, G. De Gregorio3,4, A. Gargano4, S. Leoni1,2, B. Fornal5, N. Brancadori1, G. Ciconali1,2, F. C. L. Crespi1,2, N. Cieplicka-Oryńczak5, Ł. W. Iskra5, G. Colombi1,2,6, Y. H. Kim6,†, U. Köster6, C. Michelagnoli6, F. Dunkel7, A. Esmaylzadeh7, L. Gerhard7, J. Jolie7, L. Knafla7, M. Ley7, J.-M. Régis7, K. Schomaker7, and M. Sferrazza8

  • 1Dipartimento di Fisica, Università degli Studi di Milano, 20133 Milano, Italy
  • 2INFN Sezione di Milano, 20133, Milano, Italy
  • 3Dipartimento di Matematica e Fisica, Università degli Studi della Campania “Luigi Vanvitelli,” 81100 Caserta, Italy
  • 4INFN Sezione di Napoli, 80126, Napoli, Italy
  • 5Institute of Nuclear Physics, PAN, 31-342 Kraków, Poland
  • 6Institut Laue-Langevin, 38042 Grenoble, France
  • 7Universität zu Köln, Institut für Kernphysik, 50937 Köln, Germany
  • 8Département de Physique, Université libre de Bruxelles, 1050 Bruxelles, Belgium

  • *Corresponding author: simone.bottoni@mi.infn.it
  • Present address: Center for Exotic Nuclear Studies, Institute for Basic Science, Daejeon 34126, Republic of Korea.

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 107, Iss. 1 — January 2023

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×