• Letter

First high-precision direct determination of the atomic mass of a superheavy nuclide

P. Schury et al.
Phys. Rev. C 104, L021304 – Published 31 August 2021

Abstract

We present the first direct measurement of the atomic mass of a superheavy nuclide. Atoms of Db257 (Z=105) were produced online at the RIKEN Nishina Center for Accelerator-Based Science using the fusion-evaporation reaction Pb208(V51, 2n)Db257. The gas-filled recoil ion separator GARIS-II was used to suppress both the unreacted primary beam and some transfer products, prior to delivering the energetic beam of Db257 ions to a helium gas-filled ion stopping cell wherein they were thermalized. Thermalized Db3+257 ions were then transferred to a multireflection time-of-flight mass spectrograph for mass analysis. An alpha particle detector embedded in the ion time-of-flight detector allowed disambiguation of the rare Db3+257 time-of-flight detection events from background by means of correlation with characteristic α decays. The extreme sensitivity of this technique allowed a precision atomic mass determination from 11 events. The mass excess was determined to be 100063(231)stat(132)syskeV/c2. Comparing to several mass models, we show the technique can be used to unambiguously determine the atomic number as Z=105 and should allow similar evaluations for heavier species in future work.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 4 June 2020
  • Revised 3 March 2021
  • Accepted 30 July 2021

DOI:https://doi.org/10.1103/PhysRevC.104.L021304

©2021 American Physical Society

Physics Subject Headings (PhySH)

Nuclear Physics

Authors & Affiliations

Click to Expand

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 104, Iss. 2 — August 2021

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×