• Open Access

Particlization of an interacting hadron resonance gas with global conservation laws for event-by-event fluctuations in heavy-ion collisions

Volodymyr Vovchenko and Volker Koch
Phys. Rev. C 103, 044903 – Published 12 April 2021

Abstract

We revisit the problem of particlization of a QCD fluid into hadrons and resonances at the end of the fluid dynamical stage in relativistic heavy-ion collisions in a context of fluctuation measurements. The existing methods sample an ideal hadron resonance gas, and therefore, they do not capture the non-Poissonian nature of the grand-canonical fluctuations, expected due to QCD dynamics such as the chiral transition or QCD critical point. We address the issue by partitioning the particlization hypersurface into locally grand-canonical fireballs populating the space-time rapidity axis that are constrained by global conservation laws. The procedure allows to quantify the effect of global conservation laws, volume fluctuations, thermal smearing, and resonance decays on fluctuation measurements in various rapidity acceptances and can be used in fluid dynamical simulations of heavy-ion collisions. As a first application, we study event-by-event fluctuations in heavy-ion collisions at the Large Hadron Collider (LHC) using an excluded volume hadron resonance gas model matched to lattice QCD susceptibilities, with a focus on (pseudo)rapidity acceptance dependence of net baryon, net proton, and net charge cumulants. We point out large differences between net proton and net baryon cumulant ratios that make direct comparisons between the two unjustified. We observe that the existing experimental data on net-charge fluctuations at the LHC shows a strong suppression relative to a hadronic description.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
2 More
  • Received 6 January 2021
  • Accepted 18 March 2021

DOI:https://doi.org/10.1103/PhysRevC.103.044903

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Statistical Physics & ThermodynamicsNuclear Physics

Authors & Affiliations

Volodymyr Vovchenko and Volker Koch

  • Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 103, Iss. 4 — April 2021

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×