Bose condensation of squeezed light

K. Morawetz
Phys. Rev. B 99, 205124 – Published 15 May 2019

Abstract

Light with a chemical potential and no mass is shown to possess a general phase-transition curve to Bose-Einstein condensation. This limiting density and temperature range is found by the diverging in-medium potential range of effective interaction. The inverse expansion series of the effective interaction from the Bethe-Salpeter equation is employed, exceeding the ladder approximation. While usually the absorption and emission with dye molecules is considered, here it is proposed that squeezing can also create such a mean interaction leading to a chemical potential. The equivalence of squeezed light with a complex Bogoliubov transformation of an interacting Bose system with finite lifetime is established, with the help of which an effective gap is deduced where the squeezing parameter is related to an equivalent gap by |Δ(ω)|=ω/(coth2|z(ω)|1). This gap phase creates a finite condensate in agreement with the general limiting density and temperature range. In this sense, it is shown that squeezing induces the same effect on light as an interaction, leading to possible condensation. The phase diagram for condensation is presented due to squeezing and the appearance of two gaps is discussed.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
3 More
  • Received 7 September 2018
  • Revised 18 April 2019

DOI:https://doi.org/10.1103/PhysRevB.99.205124

©2019 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

K. Morawetz

  • Münster University of Applied Sciences, Stegerwaldstrasse 39, 48565 Steinfurt, Germany and International Institute of Physics- UFRN, Campus Universitário Lagoa nova, 59078-970 Natal, Brazil

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 99, Iss. 20 — 15 May 2019

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×