• Featured in Physics
  • Editors' Suggestion

Hyperspatial optimization of structures

Chris J. Pickard
Phys. Rev. B 99, 054102 – Published 6 February 2019
Physics logo See Synopsis: Extra Dimensions Give Optimization a Boost
PDFHTMLExport Citation

Abstract

Anticipating the low-energy arrangements of atoms in space is an indispensable scientific task. Modern stochastic approaches to searching for these configurations depend on the optimization of structures to nearby local minima in the energy landscape. In many cases these local minima are relatively high in energy, and inspection reveals that they are trapped, tangled, or otherwise frustrated in their descent to a lower-energy configuration. Strategies have been developed which attempt to overcome these traps, such as classical and quantum annealing, basin/minima hopping, evolutionary algorithms, and swarm-based methods. Random structure search makes no attempt to avoid the local minima and benefits from a broad and uncorrelated sampling of configuration space. It has been particularly successful in the first-principles prediction of unexpected new phases of dense matter. Here it is demonstrated that by starting the structural optimizations in a higher-dimensional space, or hyperspace, many of the traps can be avoided and that the probability of reaching low-energy configurations is much enhanced. Excursions into the extra dimensions are progressively eliminated through the application of a growing energetic penalty. This approach is tested on hard cases for random search: clusters, compounds, and covalently bonded networks. The improvements observed are most dramatic for the most difficult ones. Random structure search is shown to be typically accelerated by two orders of magnitude and more for particularly challenging systems. This increase in performance is expected to benefit all approaches to structure prediction that rely on the local optimization of stochastically generated structures.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
4 More
  • Received 1 November 2018
  • Revised 12 December 2018

DOI:https://doi.org/10.1103/PhysRevB.99.054102

©2019 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Synopsis

Key Image

Extra Dimensions Give Optimization a Boost

Published 6 February 2019

The computation of stable atomic structures can be greatly accelerated if performed in a space with extra dimensions.

See more in Physics

Authors & Affiliations

Chris J. Pickard*

  • Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom and Advanced Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan

  • *cjp20@cam.ac.uk

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 99, Iss. 5 — 1 February 2019

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×