• Editors' Suggestion
  • Rapid Communication

Enhanced ultrafast relaxation rate in the Weyl semimetal phase of MoTe2 measured by time- and angle-resolved photoelectron spectroscopy

A. Crepaldi, G. Autès, G. Gatti, S. Roth, A. Sterzi, G. Manzoni, M. Zacchigna, C. Cacho, R. T. Chapman, E. Springate, E. A. Seddon, Ph. Bugnon, A. Magrez, H. Berger, I. Vobornik, M. Kalläne, A. Quer, K. Rossnagel, F. Parmigiani, O. V. Yazyev, and M. Grioni
Phys. Rev. B 96, 241408(R) – Published 18 December 2017
PDFHTMLExport Citation

Abstract

MoTe2 has recently been shown to realize in its low-temperature phase the type-II Weyl semimetal (WSM). We investigated by time- and angle- resolved photoelectron spectroscopy (tr-ARPES) the possible influence of the Weyl points on the electron dynamics above the Fermi level EF, by comparing the ultrafast response of MoTe2 in the trivial and topological phases. In the low-temperature WSM phase, we report an enhanced relaxation rate of electrons optically excited to the conduction band, which we interpret as a fingerprint of the local gap closure when Weyl points form. By contrast, we find that the electron dynamics of the related compound WTe2 is slower and temperature independent, consistent with a topologically trivial nature of this material. Our results shows that tr-ARPES is sensitive to the small modifications of the unoccupied band structure accompanying the structural and topological phase transition of MoTe2.

  • Figure
  • Figure
  • Figure
  • Received 13 September 2017

DOI:https://doi.org/10.1103/PhysRevB.96.241408

©2017 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

A. Crepaldi1, G. Autès1,2, G. Gatti1, S. Roth1, A. Sterzi3, G. Manzoni3, M. Zacchigna4, C. Cacho5, R. T. Chapman5, E. Springate5, E. A. Seddon6,7, Ph. Bugnon1, A. Magrez1, H. Berger1, I. Vobornik8, M. Kalläne9, A. Quer9, K. Rossnagel9, F. Parmigiani3,10,11, O. V. Yazyev1,2, and M. Grioni1

  • 1Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
  • 2National Centre for Computational Design and Discovery of Novel Materials MARVEL, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
  • 3Universitá degli Studi di Trieste - Via A. Valerio 2, Trieste 34127, Italy
  • 4C.N.R. - I.O.M., Strada Statale 14, km 163.5, Trieste 34149, Italy
  • 5Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell OX11 0QX, United Kingdom
  • 6The Photon Science Institute, The University of Manchester, Manchester M13 9PL, United Kingdom
  • 7The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington WA4 4AD, United Kingdom
  • 8CNR. - IOM., Strada Statale 14, km 163.5, Trieste 34149, Italy
  • 9Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
  • 10Elettra - Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, Trieste 34149, Italy
  • 11International Faculty - University of Köln, 50937 Köln, Germany

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 96, Iss. 24 — 15 December 2017

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×