Hybridization-induced interface states in a topological-insulator–ferromagnetic-metal heterostructure

Yi-Ting Hsu, Kyungwha Park, and Eun-Ah Kim
Phys. Rev. B 96, 235433 – Published 21 December 2017

Abstract

Recent experiments demonstrating large spin-transfer torques in topological-insulator (TI)–ferromagnetic-metal (FM) bilayers have generated a great deal of excitement due to their potential applications in spintronics. The source of the observed spin-transfer torque, however, remains unclear. This is because the large charge transfer from the FM to the TI layer would prevent the Dirac cone at the interface from being anywhere near the Fermi level to contribute to the observed spin-transfer torque. Moreover, there is still not much understanding of the impact on the Dirac cone at the interface from the metallic bands overlapping in energy and momentum, where strong hybridization could take place. Here, we build a simple microscopic model and perform first-principles-based simulations for such a TI-FM heterostructure, considering the strong hybridization and charge-transfer effects. We find that the original Dirac cone is destroyed by hybridization, as expected. Instead, we find an interface state that we dub a “descendent state” that forms near the Fermi level due to the strong hybridization with the FM states at the same momentum. Such a descendent state carries a sizable weight of the original Dirac interface state, and thus it inherits the localization at the interface and the same Rashba-type spin-momentum locking. We propose that the descendent state may be an important source of the experimentally observed large spin-transfer torque in the TI-FM heterostructure.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 16 August 2017

DOI:https://doi.org/10.1103/PhysRevB.96.235433

©2017 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Yi-Ting Hsu1, Kyungwha Park2, and Eun-Ah Kim3

  • 1Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland, College Park, Maryland 20742, USA
  • 2Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
  • 3Department of Physics, Cornell University, Ithaca, New York 14853, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 96, Iss. 23 — 15 December 2017

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×