Quantum transport and the Wigner distribution function for Bloch electrons in spatially homogeneous electric and magnetic fields

G. J. Iafrate, V. N. Sokolov, and J. B. Krieger
Phys. Rev. B 96, 144303 – Published 9 October 2017

Abstract

The theory of Bloch electron dynamics for carriers in homogeneous electric and magnetic fields of arbitrary time dependence is developed in the framework of the Liouville equation. The Wigner distribution function (WDF) is determined from the single-particle density matrix in the ballistic regime, i.e., collision effects are excluded. In the theory, the single-particle transport equation is established with the electric field described in the vector potential gauge, and the magnetic field is treated in the symmetric gauge. No specific assumptions are made concerning the form of the initial distribution in momentum or configuration space. The general approach is to employ the accelerated Bloch state representation (ABR) as a basis so that the dependence upon the electric field, including multiband Zener tunneling, is treated exactly. Further, in the formulation of the WDF, we transform to a new set of variables so that the final WDF is gauge invariant and is expressed explicitly in terms of the position, kinetic momentum, and time. The methodology for developing the WDF is illustrated by deriving the exact WDF equation for free electrons in homogeneous electric and magnetic fields resulting in the same form as given by the collisionless Boltzmann transport equation (BTE). The methodology is then extended to the case of electrons described by an effective Hamiltonian corresponding to an arbitrary energy band function; the exact WDF equation results for the effective Hamiltonian case are shown to approximate the free electron results when taken to second order in the magnetic field. As a corollary, in these cases, it is shown that if the WDF is a wave packet, then the time rate of change of the electron quasimomentum is given by the Lorentz force. In treating the problem of Bloch electrons in a periodic potential in the presence of homogeneous electric and magnetic fields, the methodology for deriving the WDF reveals a multiband character due to the inherent nature of the Bloch states. The K0 representation of the Bloch envelope functions is employed to express the multiband WDF in a useful form. In examining the single-band WDF, it is found that the collisionless WDF equation matches the equivalent BTE to first order in the magnetic field. These results are necessarily extended to second order in the magnetic field by employing a unitary transformation that diagonalizes the Hamiltonian using the ABR to second order. The unitary transformation process includes a discussion of the multiband WDF transport analysis and the identification of the combined Zener-magnetic-field induced tunneling.

  • Received 27 July 2017

DOI:https://doi.org/10.1103/PhysRevB.96.144303

©2017 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied PhysicsNonlinear Dynamics

Authors & Affiliations

G. J. Iafrate*

  • Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695-8617, USA

V. N. Sokolov

  • Department of Theoretical Physics, Institute of Semiconductor Physics, NASU, Pr. Nauki 41, Kiev 03028, Ukraine

J. B. Krieger

  • Department of Physics, Brooklyn College, CUNY, Brooklyn, New York 11210, USA

  • *Author to whom correspondence should be addressed: gjiafrate@ncsu.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 96, Iss. 14 — 1 October 2017

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×